A synergistic role of IRP1 and FBXL5 proteins in coordinating iron metabolism during cell proliferation.
نویسندگان
چکیده
Iron-regulatory protein 1 (IRP1) belongs to a family of RNA-binding proteins that modulate metazoan iron metabolism. Multiple mechanisms are employed to control the action of IRP1 in dictating changes in the uptake and metabolic fate of iron. Inactivation of IRP1 RNA binding by iron primarily involves insertion of a [4Fe-4S] cluster by the cytosolic iron-sulfur cluster assembly (CIA) system, converting it into cytosolic aconitase (c-acon), but can also involve iron-mediated degradation of IRP1 by the E3 ligase FBXL5 that also targets IRP2. How CIA and FBXL5 collaborate to maintain cellular iron homeostasis through IRP1 and other pathways is poorly understood. Because impaired Fe-S cluster biogenesis associates with human disease, we determined the importance of FBXL5 for regulating IRP1 when CIA is impaired. Suppression of FBXL5 expression coupled with induction of an IRP1 mutant (IRP13C>3S) that cannot insert the Fe-S cluster, or along with knockdown of the CIA factors NUBP2 or FAM96A, reduced cell viability. Iron supplementation reversed this growth defect and was associated with FBXL5-dependent polyubiquitination of IRP1. Phosphorylation of IRP1 at Ser-138 increased when CIA was inhibited and was required for iron rescue. Impaired CIA activity, as noted by reduced c-acon activity, was associated with enhanced FBXL5 expression and a concomitant reduction in IRP1 and IRP2 protein level and RNA-binding activity. Conversely, expression of either IRP induced FBXL5 protein level, demonstrating a negative feedback loop limiting excessive accumulation of iron-response element RNA-binding activity, whose disruption reduces cell growth. We conclude that a regulatory circuit involving FBXL5 and CIA acts through both IRPs to control iron metabolism and promote optimal cell growth.
منابع مشابه
Checks and balances for the iron bank.
The RNA-binding iron regulatory proteins IRP1 and IRP2 are inactivated by either Fe-S cluster insertion or protein degradation mediated by the E3 ligase component FBXL5. However, the mechanisms for coordination between Fe-S cluster assembly, FBXL5, and IRP1/IRP2 activity are poorly defined. A new study reveals that FBXL5 plays a critical role in limiting IRP1 and IRP2 overaccumulation when cyto...
متن کاملOverexpression of iron regulatory protein 1 suppresses growth of tumor xenografts.
Iron is essential for proliferation of normal and neoplastic cells. Cellular iron uptake, utilization and storage are regulated by transcriptional and post-transcriptional mechanisms. We hypothesized that the disruption of iron homeostasis may modulate the growth properties of cancer cells. To address this, we employed H1299 lung cancer cells engineered for tetracycline-inducible overexpression...
متن کاملAn E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.
Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targe...
متن کاملThe role of iron regulatory proteins in the control of iron metabolism in mammals
The iron regulatory proteins (IRP1 and IRP2) are two cytoplasmic RNA-binding proteins involved in the mechanisms that control iron metabolism in mammalian cells. They modulate the expression of iron-related proteins at a post-transcriptional level by binding to specific iron regulatory elements (IREs) on their mRNAs. IRP-IRE interaction can block protein synthesis or stabilize the mRNA. At low ...
متن کاملConditional derepression of ferritin synthesis in cells expressing a constitutive IRP1 mutant.
Iron regulatory protein 1 (IRP1), a major posttranscriptional regulator of cellular iron and energy metabolism, is controlled by an iron-sulfur cluster switch. Cysteine-437 is critical for coordinating the cluster, and its replacement yields mutants that do not respond to iron perturbations and constitutively bind to cognate mRNA iron-responsive elements (IREs). The expression of IRP1(C437S) in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 292 38 شماره
صفحات -
تاریخ انتشار 2017